85 research outputs found

    The Genesis of Methicillin-Resistant \u3ci\u3eStaphylococcus aureus\u3c/i\u3e: A Modern Day Leprosy and Hospital Menace

    Get PDF
    Methicillin-Resistant Staphylococcus aureus leads to more deaths than AIDS and resists most antibiotics. How do such “superbugs” fit within a creation framework

    Staph Bacteria from First Breath The Interweaving of the Nasal Microbiome with the Intricate and Complex Nose

    Get PDF
    Many microbes live in a mutualistic relationship with the human body, make up the human microbiome, and play a role in our health by stimulating and modulating the immune system. Man’s body is “covered” both inside and outside with millions of microbes that play a role in maintaining normal bodily functions and sustaining life in our changing world. The inner nose in the human body is colonized by millions of microbes during the first week of life. This internal colonization of the upper respiratory system is termed our nasal microbiome. Though we cannot see it, this microbiome is important for normal functioning, especially in a pathogenic world. Staphylococci interact to stimulate the immune system, and play a role with the interface of the immune system, specifically generating antibody production early in life. This article focuses on possible origin of Staphylococci, their role in the nasal microbiome, the host benefit via their presence in the microbiome, and their role in creation. Resident nose bacteria are highly diverse, and an understanding of the nasal microbiome is necessary to gain insight into microbial involvement in human health and infectious disease. The normal nasal microbiota provides clues to the pre-Fall function of bacteria. It is “normal” and critical for our body’s health to be symbiotically inhabited by microbes, such as beneficial bacteria. God’s very good creation likely included microbes in the nose and throughout the body, and these can provide clues for human health in the future

    The Origin of Fleas and the Genesis of Plague

    Get PDF
    Human history has been riddled by diseases spread by flea vectors including the bubonic plague. Recently, Madagascar has documented more than 100 cases. Fleas were part of God’s “very good” (Genesis 1:31) creation that transformed to an ectoparasitic condition after the Curse. Creation biologists continue to synthesize a working model of this conversion from environmental recyclers to parasites as a secondary state. Morphological design of the flea combined with its unique feeding ability has resulted in it being an exceptional vector for Yersinia pestis, the causative bacterium of the plague

    The Wonderfully Made Design of the Skin and Its Microbiome

    Get PDF
    Many microbes live in a mutualistic relationship with the human body, make up the human microbiome, and play a role in our health by modulating the immune system. Man is “covered” inside and outside his body with millions of microbes to maintain normal bodily functions and sustain life in our changing world. The skin is the largest organ in the human body and is colonized by millions of microbes. This external colonization of the integumentary system is termed our skin microbiome. Man cannot see it (except with a microscope), but we need it for normal functioning, certainly in a pathogenic world. This article focuses on the skin microbiome, its benefits, and role in creation. Resident skin bacteria are highly diverse, and an understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin diseases and disorders. The normal skin microbiota provides clues to the pre-Fall function of bacteria. It is “normal” and critical for our body’s health to be symbiotically inhabited by microbes such as beneficial bacteria. God’s very good creation likely included microbes on the skin, and these can provide clues for human health in the future. The skin microbiome may enable novel probiotic and antibiotic approaches

    The Design of Giardia and the Genesis of Giardiasis

    Get PDF
    Giardia is a genus of protozoa discovered in 1681. Six morphologically distinct species are recognized. It mainly attaches in the upper GI tract of a wide variety of vertebrates (including zebrafish), often with beaver and muskrat as reservoirs/carriers but exhibiting minimal—if any—disease in some animals. Giardia is usually non-pathogenic in the human population, even in children if exposed early in life. Although Giardia can be pathogenic, some strains colonize the gut with no malady. This parasite is not invasive and only serious infections depress the small intestine. Giardia are pear-shaped, have an adhesive disc for attaching to enterocyte cells in the small intestine villus, and move with eight designed flagella. In the post-Fallen world, Giardia infection occasionally has resulted in digestive dysfunction. However, Giardia may function in non-parasitic, possibly mutualistic, ways. For example, it may have been designed to aid digestion having a role as a “primer.” The presence of Giardia muris causes a fundamental change in the microbiome in mice and Giardia may have other influences on the microbiome such as enhancing digestion in certain animals and possibly shifting ratios of bacteria from anaerobic to aerobic. Giardia may play a role in host metabolism and provide nutritional enhancement via its association with enteric bacteria, like E. coli. The function of Giardia may parallel with non-parasitic tasks found in Trypanosoma lewisi, and also termite systems that contain protozoa and bacteria for plant digestion. Giardiahas two “faces” even in today\u27s world: a harmless commensal in wildlife and a pathogenic parasite in humans

    Super Staph in the Community: Is It Evolving?

    Get PDF
    Staphylococcus aureus infections are a common cause of disease, particularly in colonized people. They frequently cause staph infections and are often dubbed “Super Staph” because they are virulent and multidrug resistant. Recently, a series of published articles have reported that community-acquired methicillin-resistant S. aureus (CA-MRSA) strains are evolving and becoming more prevalent in households. In contrast, health care acquired MRSA (HA-MRSA) is declining in the United States. The changing “Superbugs” have often been used as an example of “evolution in action.” Although MRSA infections have become more prevalent in the community, studies of college students carrying S. aureus and MRSA colonization are lacking. In early studies at Liberty University, we have found that students in microbiology classes who have more contact with individuals in a healthcare setting are more likely to carry MRSA in their body. The classes that had the highest rate of HA-MRSA carriage were those primarily populated by nursing students. Nursing students typically have greater exposure to clinical settings and nursing homes than students in other fields of study. However, in research collected this past year, 2014–2015, we observed a shift to students of many majors now carrying CA-MRSA. At Liberty University, we sampled 544 students and had up to 20%+ MRSA rates common among clinically oriented students, five to ten times the national average. We have seen a changing profile from HA-MRSA to CA-MRSA; this change has the potential to be dangerous, since the new strains are more virulent and aggressive. CA-MRSA is somewhat difficult to define, but is mostly associated with antibiotic profile, toxin genes, and place of acquisition. There is a variation of S. aureusstrains, but most change is found in tightly knit groups: households, dorms, and other close living quarters. The bacteria are “ping-ponging” around among students, changing as they go. This change is real and clearly indicates an emergence of new MRSA variants that some may call microevolution. It is, however, not Darwinian upward-onward evolution but clearly adaptive changes within a species: variants on a theme. MRSA strains are acquiring more genes as they “ping-pong” from one person to another. They change their virulence as they pick up more foreign genes (via phage or plasmids) and vary as they go. The purpose of this article is to provide a reasonable explanation for the genesis, emergence, and the new dominance of Community-associated (CA) MRSA. It also addresses the issue of whether this phenomenon is “evolution in action.” Microbiology research based on the creation paradigm appears to provide some answers to these puzzling questions regarding the new variants of Staphylococcus aureus and its emerging dominance in the United States

    Life Is in the Blood

    Get PDF
    It takes about 60 seconds for all the blood in your body to complete its journey. It travels from your heart to your extremities and returns, there and back again. Blood moves with the rapid current of the great arterial rivers and through the smallest capillary creeks. William Harvey first noticed circulation (1628) through the heart into arteries and veins; however, he could not see how they connected since he did not have a microscope. The man who first described this was Anton van Leeuwenhoek about 46 years later (1674). Then, J. J. Lister and Thomas Hodgkin described the rouleaux formation or stacking of RBCs through a capillary bed. All of these men mentioned above were committed Christians. Three hundred years ago (1719), Leeuwenhoek was providing his most detailed account of red corpuscles and capillary circulation. He also provided an accurate measurement of 0.003 inches (actual: 6.2–8.2 µm) for human blood cells and described many different types in animal cells. This was about 45 years after he first described them as a young man (1674). The human body produces two million blood cells deep in its bone marrow per second and pumps 1500–2000 gallons per day. Once formed, those red blood cells (RBCs) move into the bloodstream with white blood cells and platelets, all circulating through 60,000 miles of arteries, veins, and capillaries in the human body. Leeuwenhoek described the connections between arteries and veins as capillaries and demonstrated what Harvey could only postulate. BLOOD REVEALS MUCH ABOUT THE MAJESTY OF OUR CREATOR AND MASTER CRAFTSMAN, IRREDUCIBLE COMPLEXITY, AND THE HEALTH OR DISEASE STATE OF THE HUMAN BODY. Knowledge of the blood and circulatory system gives us insight into spiritual, biological, and clinical applications. Blood reveals much about the majesty of our Creator and Master Craftsman, irreducible complexity, and the health or disease state of the human body. Capillaries are the smallest blood vessels through which blood cells can move through in single file. This blood vessel network knitted with lymphatic capillaries shows an interwoven complexity, thus revealing the fearfully and wonderfully made design of our body (Gillen, 2009). In this article, we also show a biblical worldview and notable Christians who expounded the biblical concept that “Life is in the Blood.” For the life of the flesh is in the blood. (Leviticus 17:11

    The Signature of God in Medicine and Microbiology An Apologetic Argument for Declarative Design in the Discoveries of Alexander Fleming

    Get PDF
    In logic and reasoning, a signature indicates the presence of an author; likewise, the characteristics of staphylococci indicate the presence of a Creator. Staphylococci and its “kind” are common bacteria, particularly in colonized people.1 Staphylococcus aureus has a complex molecular mechanism of assembling its golden pigment, staphyloxanthin. The biosynthesis of staphyloxanthin is a stellar example of irreducible complexity. Similar to staphylococci, the life and works of Alexander Fleming show the fingerprints of Providence. The so-called “serendipitous” achievements of Fleming have contributed to modern medicine, convincing Fleming and others that God was at work in his life. Fleming recognized that his life’s discoveries and the “weaving” of events were more than chance; it was the invisible hand of God on his life and works. The molecular complexities of staphylococci mechanisms and the achievements of Fleming indicate the signature of a divine Designer who has placed his signature on his art piece, staphylococci

    The Coliform Kind: E. coli and Its “Cousins” The Good, the Bad, and the Deadly

    Get PDF
    Even though some intestinal bacteria strains are pathogenic and even deadly, most coliforms strains still show evidence of being one of God’s “very good” creations. In fact, bacteria serve an intrinsic role in the colon of the human body. These bacteria aid in the early development of the immune system and stimulate up to 80% of immune cells in adults. In addition, digestive enzymes, Vitamins K and B12, are produced byEscherichia coli and other coliforms. E. coli is the best-known bacteria that is classified as coliforms. The term “coliform” name was historically attributed due to the “Bacillus coli-like” forms. The bacteria are characteristically Gram-negative bacillus (rod-shaped) organisms found in the colons of man and animal. Typical genera include Escherichia, Citrobacter, Klebsiella, and Enterobacter. All these bacteria genera ferment lactose and are phenotypically similar. These genera are often used as indicators in testing the quality of water. Their presence indicates contamination that can cause transmission of infection. This leads to a bad reputation for the coliform kind. How could God consider this creation good if they cause disease

    Our Impressive Immune System: More Than a Defense

    Get PDF
    Most likely the immune system was put into place in the original human body design. We know from Exodus 20:11 and other verses that God completed His work of creation in six days. Therefore, the human body and its functional parts, including the components of the immune system, must have been part of the original creation. God said that all He had made was very good (Genesis 1:31). Since there were no pathogens (germs), parasites, or diseases prior the Edenic Fall and subsequent Curse, the immune system may have functioned differently in that world unmarred by sin and death. The immune system serves more than just to “defend” against disease. The immune system was designed to interact with microbes and cleanse the body of aged, dying, dead red blood cells and bacteria even in the Pre-Fall World. There are toll-like receptors in the immune system that have “sensory” function, as well as defense functions in animals and humans. The immune system in Peyer’s Patches in the GI tract assists the normal development of the intestine and regulates the normal microbiome. Consider a sheep dog designed to positively interact with sheep (herd them); they only “defend” with teeth when a predator (e.g. a wolf) approaches. The immune system in a pre-Fall world (Gillen and Sherwin 2013) worked to positively assist body development (as will be discussed); in the post-Fall world, they also defend against pathogens. This is how most creation biologists view the immune system. Immunology is that branch of biology that involves studying how the body is designed to protect itself from agents of disease called pathogens. The word immune comes from the Latin root word that means “freedom or protection from taxes or burdens.” This amazing system battles disease in a manner that is so complex and intricate that the most gifted imagination could not envision such incredible functions. In today’s world (post-Fall), the primary role of our immune system is to recognize pathogens and parasites, then to destroy them. Three main methods of destruction include baths of caustic digestive enzymes that cause rapid perforation with submicroscopic holes, overwhelming organisms with sticky proteins, and lastly by ingestion by macrophages (amoeba-like cells). In addition, the immune system is designed to prevent the proliferation of mutant cells, such as various cancers. When this system malfunctions or when a boundary is breached, it can result in localized or systemic infections, or worse, death
    • …
    corecore